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SUMMARY

The trace amine-associated receptor 1 (TAAR1) is a
biogenic amine G protein-coupled receptor (GPCR)
that is potently activated by 3-iodothyronamine (1,
T1AM) in vitro. Compound 1 is an endogenous deriva-
tive of the thyroid hormone thyroxine which rapidly in-
duces hypothermia, anergia, and bradycardia when
administered to mice. To explore the role of TAAR1

in mediating the effects of 1, we rationally designed
and synthesized rat TAAR1 superagonists and lead
antagonists using the rotamer toggle switch model
of aminergic GPCR activation. The functional activity
of a ligand is proposed to be correlated to its probable
interactions with the rotamer switch residues; ago-
nists allow the rotamer switch residues to toggle to
their active conformation, whereas antagonists inter-
fere with this conformational transition. These agonist
and antagonist design principles provide a concep-
tual model for understanding the relationship be-
tween the molecular structure of a drug and its
pharmacological properties.

INTRODUCTION

3-iodothyronamine (1, T1AM; Figure 1A) is an endogenous, de-

carboxylated, and deiodinated metabolite of the thyroid hormone

thyroxine (T4; Figure 1A) that is found in the brain, heart, liver, and

blood (Scanlan et al., 2004). When administered to mice intraper-

itoneally, 1 rapidly induces hypothermia, anergia, and bradycar-

dia, effects of which are opposite those observed with hyperthy-

roidism. In vitro, 1 induces the production of cAMP (adenosine

30,50-cyclic monophosphate) in HEK293 (human embryonic kid-

ney 293) cells stably transfected with the G protein-coupled

receptor (GPCR) known as TAAR1 (Hart et al., 2006; Scanlan

et al., 2004; Wainscott et al., 2007; Zucchi et al., 2006). Addition-

ally, 1 has been found to inhibit neurotransmitter reuptake by the

dopamine (DAT) and norepinephrine transporter (NET), and

inhibits vesicular packaging by the vesicular monoamine trans-

porter 2 (VMAT2) (Snead et al., 2007). To understand the role of
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TAAR1 in mediating the effects of 1, we sought to develop small

molecules that regulate the activity of TAAR1.

Rat TAAR1 (rTAAR1) is homologous to the b2 adrenergic (b2AR),

dopamine, and serotonin receptors and belongs to the biogenic

amine subfamily of class A rhodopsin-like GPCRs (Borowsky

et al., 2001; Bunzow et al., 2001; Lindemann et al., 2005). GPCRs

are seven-transmembrane (TM) proteins with an extracellular

amino terminus and an intracellular carboxy terminus (Figures

1B and 1C; Gether, 2000; Wess, 1998). The binding site of aminer-

gic GPCRs is located within the TM region and is primarily com-

posed of the extracellular half of transmembranes 3, 5, 6, and

7 (Cherezov et al., 2007; Rasmussen et al., 2007; Rosenbaum

et al., 2007; Tota et al., 1991). Elegant pharmacological and

mutagenesis studies on b2AR suggest that epinephrine binds to

b2AR with aspartic acid 3.32 (D3.32) acting as the counterion for

the charged amine, serine residues 5.42, 5.43, and 5.46 (S5.42,

S5.43, and S5.46, respectively) interacting with the catechol

hydroxyls, phenylalanines 6.51 and 6.52 (F6.51 and F6.52) inter-

acting with the catechol ring, and asparagine 6.55 (N6.55) as

the partner for the b-hydroxyl group (Figure 1D) (see Experimental

Procedures for a description of the residue indexing system) (Lia-

pakis et al., 2000; Shi and Javitch, 2002; Strader et al., 1988,

1989a, 1989b, 1994; Wieland et al., 1996; Zuurmond et al., 1999).

Previous work with the b2AR suggests that agonist binding

toggles a rotamer switch to its active configuration and induces a

conformational change in TM6 (Figure 2; Shi et al., 2002). The

movement of the cytoplasmic end of TM6 away from TM3 is

thought to break an ionic lock interaction that is present in the

inactive state of the receptor (Figure 2A). This exposes G protein

recognition sites in the intracellular surface of the receptor that

activate G proteins and initiate the signaling cascade (Balles-

teros et al., 2001; Yao et al., 2006). The rotamer switch is partly

composed of tryptophan (W6.48) and phenylalanine (F6.52) res-

idues in TM6 that toggle concertedly between their inactive (Fig-

ure 2A) and active (Figure 2B) rotamer configurations to modu-

late the bend angle of the kink in TM6 formed by proline 6.50

(P6.50). The ionic lock involves highly conserved aspartic acid

(D3.49) and arginine (R3.50) residues in TM3 and a glutamic

acid (E6.30) residue in TM6. The absolute conservation of the

rotamer switch and ionic lock residues in rTAAR1 suggests a

mechanism of activation for rTAAR1 similar to b2AR.

Studies probing the mechanism of agonist-induced conforma-

tional changes in the b2AR have found that agonist binding
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occurs in a sequential process involving a series of conforma-

tional intermediates that have increasing numbers of interactions

with the agonist as the receptor moves toward the fully active

state (Kobilka and Deupi, 2007). The binding site of b2AR is not

prearranged to simultaneously interact with all of the functional

groups of a given agonist like epinephrine (Figure 1D). Upon

binding, only a few structural elements of epinephrine (i.e., the

amine and catechol moiety) are proposed to be engaged with

the b2AR. These initial interactions induce a conformation transi-

tion to an intermediate that reveals additional contact points that

Figure 1. Hormones, Metabolites, and

Biogenic Amine GPCR

(A) Structures of thyroxine (T4) and 3-iodothyron-

amine (1, T1AM).

(B and C) Schematic representations of the helical

arrangement of GPCRs viewed from the cell mem-

brane (B) and extracellular surface (C).

(D) Binding orientation of (R)-epinephrine in the

binding site of the b2AR viewed from the perspec-

tive of TM4. The locations of the rotamer switch

residues (white letters) (see Figure 2) and residues

known to interact with (R)-epinephrine are labeled.

The residue indexing system is described in the

Experimental Procedures.

Figure 2. Rotamer Toggle Switch Model of

Aminergic GPCR Activation

(A) Inactive state of the receptor with an antagonist

sterically occluding the rotamer switch residues

(W6.48 and F6.52) from assuming their active con-

formation.

(B) Agonist binding toggles the rotamer switch to

its active conformation and induces a conforma-

tional change in TM6 that breaks the ionic lock in-

teraction (D3.49, R3.50, and E6.30) present in the

inactive state of the receptor.

(A) and (B) are viewed from the perspective of

TM7; see Figures 1B and 1C.

interact with the b-hydroxyl and/or

N-methyl groups. The functional groups

of epinephrine have a synergistic effect

on binding affinity and receptor activation

and collectively influence the overall con-

formation of the active receptor (Liapakis

et al., 2004). The ensemble of active

receptor states induced by different

agonists may have disparate functional

properties and have different capacities to activate downstream

effector molecules such as Gs protein, GPCR receptor kinase,

and/or arrestin (Swaminath et al., 2004).

Despite being a major drug target and having insights into the

molecular mechanism of GPCR activation and agonist-induced

conformational changes, the nature of the ligand-receptor inter-

action is not fully understood. Although there have been many

successful campaigns into GPCR drug design, it is surprising

to find that there are no general postulates that can serve as

guiding principles in the process of agonist and/or antagonist
344 Chemistry & Biology 15, 343–353, April 2008 ª2008 Elsevier Ltd All rights reserved
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development without requiring extensive structure-activity rela-

tionship (SAR) data to develop a pharmacophore for the receptor

of interest. Even with pharmacophore models in hand, the code

to aminergic GPCR drug design is still unknown. Presently, it is

unclear what inherent structural features of a ligand are respon-

sible for endowing agonistic or antagonistic properties or how

and why those structural elements lead to receptor activation

or inhibition.

Based on the rotamer toggle switch model, we hypothesized

that the functional properties of a compound are determined by

the nature of its interaction with the rotamer switch residues. If a

compound allows the rotamer switch to toggle and/or has more

favorable interactions with the active state of the receptor, it will

act as an agonist (Figure 2B). In contrast, a compound will behave

as an antagonist if it can sterically occlude the rotamer switch and/

or has more favorable interactions with the inactive state of the

receptor (Figure 2A). Herein we describe the rational design and

synthesis of rTAAR1 superagonists (agonists that are more potent

and/ormoreefficacious than1) and leadantagonists guidedby the

rotamer toggle switch model of aminergic GPCR activation.

RESULTS

Development of rTAAR1 Superagonists
The ligand binding site of rTAAR1 differs from that of the b2AR in

that two hydrophobic residues, alanine (A5.42) and phenylala-

nine (F5.43) (Figure 3B), replace the serine residues S5.42 and

S5.43 in TM5 (Figure 1D). By analogy to the catecholamines

(epinephrine, norepinephrine, and dopamine), we speculate

that 2 (Figure 3A; Tan et al., 2007), a potent rTAAR1 agonist, is

anchored into the binding site by the salt bridge interaction be-

tween the charged amine and D3.32, and the hydrogen bond in-

teraction between the biaryl ether oxygen and S5.46 (Figure 3B).

To experimentally test this hypothesis, a series of derivatives of

2 containing functional groups at the b-phenyl ring (ring C in

Figure 3A) was synthesized. We specifically incorporated polar

functional groups (3–7) (Table 1) capable of forming hydrogen

bond interactions because our homology model of rTAAR1 (see

the Experimental Procedures for a description of how the model

was generated), which was based on the crystal structure of bo-

vine rhodopsin, showed that the surrounding residues around

the b-phenyl ring would be asparagines (N7.35 and N7.39), a me-

thionine (M6.55), and a cysteine (C6.54) (Figure 3B). Therefore,

if 2 binds in this orientation, having functional groups that can in-

teract with these residues should theoreticallyenhance binding af-

finity and thus increase potency. Additionally, fluorine-substituted

analogs of 2 (8 and 9) (Table 1) were also synthesized to determine

the effects of decreasing the electron density of the b-phenyl ring

on rTAAR1 activation. Compounds 3–9 were synthesized from

4-bromodiphenylether and a mono-substituted benzaldehyde

in four to seven steps (see Supplemental Schemes 1 and 2 in

the Suplemental Data available with this article online). Detailed

synthetic procedures for compounds 2–56 are described in the

Supplemental Data.

In HEK293 stable cell lines, 2 (EC50 = 28 ± 2 nM, Emax = 103 ±

4%) activates the stimulatory G protein-coupled rTAAR1 at the

same level as 1 (EC50 = 33 ± 3 nM, Emax = 100% ± 0%) (Table 1)

(Tan et al., 2007). Representative dose-response curves of ago-

nists for rTAAR1 are shown in Figure S1A. Appending a methoxy
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group at the para (3) or ortho (4) position of the b-phenyl ring in 2

was detrimental, decreasing the potency �5- to 6-fold and the

efficacy 19%–35% (3, EC50 = 142 ± 40 nM, Emax = 68% ± 8%,

and 4, EC50 = 163 ± 18 nM, Emax = 84% ± 2%) (Table 1). A

hydroxyl group at the b-phenyl ring was well tolerated by rTAAR1

but only at the para position. The potency of the para-hydroxyl

derivative 5 increased�4.5-fold (EC50 = 6 ± 1 nM) and its efficacy

was slightly enhanced (Emax = 114% ± 9%). When the hydroxyl

substituent was located at the ortho (6) or meta (7) position, the

potency decreased �7.5- to 16.5-fold (EC50 = 467 ± 107 nM

and 212 ± 39 nM, respectively), whereas the efficacy either de-

creased or was unaffected (Emax = 70% ± 6% and 106% ± 7%,

respectively). Similarly, rTAAR1 somewhat prefers a fluorine

group at the para over the meta position, as the potency was

the same for 8 (EC50 = 28 ± 6 nM) but decreased 2-fold for 9

(EC50 = 57 ± 6 nM). The efficacies of 8 and 9 (Emax = 99% ± 9%

and 110% ± 2%, respectively) were unaffected by fluorination

and were similar to that of 2. All compounds with stereogenic cen-

ters (2–50 and 52–56) were evaluated as racemic mixtures. The

observed activities of all compounds tested (1–56) were found

to be rTAAR1 dependent, as all compounds showed no cAMP

accumulation when exposed to an empty vector control cell

line (data not shown).

In an effort to improve the potency of 5, we explored its toler-

ance for methylation at the amine, iodination of the inner ring,

and hydroxylation of the outer ring. These modifications, individ-

ually or in combination, have previously been found to be bene-

ficial for rTAAR1 activation (Hart et al., 2006). Mono-methylation

of the amine in 5 provided 10, whereas mono-iodination of the

inner ring yielded 11 (Supplemental Schemes 3 and 4). Adding

a hydroxyl group to the para or meta position of the outer ring

in 11 gave 12 and 13, respectively (Supplemental Scheme 4).

When screened for agonist activity, some of the 5 derivatives

were more efficacious but none were more potent. N-methylation

of 5 (10) was beneficial, increasing the efficacy 13% (Emax =

127% ± 2%), but it did not improve potency (EC50 = 5 ± 1 nM)

(Table 1). Mono-iodination of the inner ring (11) was unfavorable,

decreasing potency�3-fold (EC50=17± 2nM) withoutsignificantly

affecting efficacy (Emax = 107% ± 8%). In the presence of an outer

ring para-hydroxyl group (12), the rTAAR1 activity improved back to

the level of 5 (EC50 = 4 ± 1 nM, Emax = 115% ± 2%). In contrast,

a meta-hydroxyl group on the outer ring of 11 (13) had no effect

on potency and efficacy (EC50 = 22 ± 2 nM and Emax = 111% ± 9%).

Development of rTAAR1 Lead Antagonist
According to our proposed binding orientation of 2 in rTAAR1

(Figure 3B), the rotamer switch residues are located in the vicinity

of position 2 of the inner ring (ring B in Figure 3A). Using the tog-

gle switch model of aminergic GPCR activation as a guideline

(Figure 2), we attempted to convert 2 into an antagonist by

appending functional groups at the 2 position to theoretically in-

terfere with the rotamer switch residues. An alcohol group was

installed into the 2 position (R5; Table 2) of 2 (14) to serve as

a handle for synthesizing a panel of ethers (15–24) and esters

(25 and 26) varying in steric bulk, rigidity, topology, and polarity

(Table 2; Supplemental Schemes 5 and 6).

The effects of the ether and ester substituents on receptor ag-

onist activity were variable. The core scaffold 14 and ethyl ether

16 were decent agonists, activating to the same efficacy level as
y 15, 343–353, April 2008 ª2008 Elsevier Ltd All rights reserved 345
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2 (Emax = 108% ± 1% and 95% ± 5%, respectively) but at �3-

to 5-fold lower potency (EC50 = 96 ± 10 nM and 144 ± 31 nM,

respectively) (Table 2). By contrast, the methyl ether 15 showed

the opposite trend, being equipotent to 2 (EC50 = 35 ± 4 nM) but

less efficacious (Emax = 82% ± 8%). The unsaturated alkene and

alkyne counterparts of the propyl ether 17 appear to be well

tolerated by rTAAR1, as 22 (EC50 = 169 ± 6 nM) and 23 (EC50 =

138 ± 37 nM) were at least 6-fold more potent than 17 (EC50 >

1 mM). The efficacies of 17, 22, and 23 were comparable

to each other (Emax = 69% ± 5%, 71% ± 4%, and 78% ± 1%,

respectively). Further increasing the size of the ether substitu-

ents (18–21 and 24) desirably decreased potency (EC50 >

1 mM) but did not completely abolish the agonist activity (Emax %

10%) of the compounds. These compounds activated rTAAR1

between 15% and 62% efficacy. Similarly, the ester substituents

Table 1. Agonist Activity of Compounds 1–13 on rTAAR1

Compound R1 R2 R3 R4

EC50
a ±

SEM (nM)

Emax
b ±

SEM (%) Nc

1 (T1AM) see

Figure 1

33 ± 3 100 ± 0 5

2 (ET-13) H H H H 28 ± 2 103 ± 4 3

3 (ET-34) H H p-OMe H 142 ± 40 68 ± 8 3

4 (ET-35) H H o-OMe H 163 ± 18 84 ± 2 3

5 (ET-36) H H p-OH H 6 ± 1 114 ± 9 4

6 (ET-37) H H o-OH H 467 ± 107 70 ± 6 3

7 (ET-65) H H m-OH H 212 ± 39 106 ± 7 3

8 (ET-66) H H p-F H 28 ± 6 99 ± 9 3

9 (ET-67) H H m-F H 57 ± 6 110 ± 7 3

10 (ET-64) H H p-OH Me 5 ± 1 127 ± 2 4

11 (ET-68) H I p-OH H 17 ± 2 107 ± 8 4

12 (ET-69) p-OH I p-OH H 4 ± 1 115 ± 2 6

13 (ET-70) m-OH I p-OH H 22 ± 2 111 ± 9 4
a EC50 is the half-maximal effective concentration of a compound.
b Emax is the maximum stimulation achieved at a concentration of 10 mM

and was calculated by use of Prism software. EC50 and Emax values rep-

resent the average of N independent experiments in triplicate and were

calculated by use of Prism software as described in the Experimental

Procedures. The standard errors of the mean (SEM) were calculated

from the EC50 and Emax values of each independent triplicate experi-

ment by use of Prism software. Emax = 100% is defined as the activity

of 1 at 10 mM.
c N is the number of independent experiments in triplicate that were

performed and used to calculate the EC50 and Emax values.
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(25 and 26) decreased the potency of 2 (EC50 = 143 ± 4 nM

and 234 ± 43 nM, respectively) but did not reduce its efficacy

below 10% (Emax = 57% ± 5% and 74% ± 3%, respectively)

(Table 2).

The observed agonist activities of 14–26 were consistent with

the idea that the inner ring functional groups of these compounds

were not properly interfering with the rotamer switch residues. In

compound 14, rotation of the inner ring about the b-carbon and

the biaryl ether oxygen axis renders position 2 and 6 indistin-

guishable (Table 2). Within the binding site, it is possible that

the inner rings of 15–26 have rotated 180� and are actually orient-

ing the position 2 functional group toward the extracellular

surface of rTAAR1 around methionine 6.55 (M6.55) instead of

the intracellular region near the rotamer switch residues. In this

alternate binding orientation, these compounds would be

Table 2. Agonist Activity of Compounds 14–26 on rTAAR1

Compound R5

EC50
a ± SEM

(nM)

Emax
b ± SEM

(%) Nc

14 (ET-51) OH 96 ± 10 108 ± 1 3

15 (ET-52) OMe 35 ± 4 82 ± 8 3

16 (ET-53) OEt 144 ± 31 95 ± 5 3

17 (ET-54) OPr >1000 69 ± 5 2

18 (ET-55) OBu >1000 31 ± 1 2

19 (ET-56) OBn >1000 58 ± 2 2

20 (ET-57) O-iPr >1000 62 ± 2 2

21 (ET-58) O-iBu >1000 15 ± 4 2

22 (ET-59) OCH2CHCH2 169 ± 6 71 ± 4 2

23 (ET-60) OCH2CCH 138 ± 37 78 ± 1 2

24 (ET-61) OCH2CO2CH3 >1000 56 ± 0 2

25 (ET-62) O2CCH2CH2Cl 143 ± 4 57 ± 5 2

26 (ET-63) O2CCH3 234 ± 43 74 ± 3 2
a EC50 is the half-maximal effective concentration of a compound.
b Emax is the maximum stimulation achieved at a concentration of 10 mM

and was calculated by use of Prism software. EC50 and Emax values rep-

resent the average of N independent experiments in triplicate and were

calculated by use of Prism software as described in the Experimental

Procedures. The standard errors of the mean (SEM) were calculated

from the EC50 and Emax values of each independent triplicate experi-

ment by use of Prism software. Emax = 100% is defined as the activity

of 1 at 10 mM.
c N is the number of independent experiments in triplicate that were per-

formed and used to calculate the EC50 and Emax values.
Figure 3. SAR of rTAAR1 Ligands and Their Proposed Binding Mode in rTAAR1

(A) Structure of 2. The A, B, and C rings correspond to its outer, inner, and b-phenyl rings, respectively.

(B) Proposed binding orientation of 2 in the binding site of rTAAR1, viewed from the perspective of TM4. The rotamer switch residues (white letters), proposed

binding, and specificity determinant residues are labeled.

(C) Agonist dose-response curves of 2 (B), 27 (,), 29 (6), 34 (-), 50 (�), and 51 (:). Dose-response curves were plotted and SEM were calculated from two or

more independent triplicate experiments by use of Prism software.

(D) Proposed binding orientation of 34 in the binding site of rTAAR1, viewed from the perspective of TM4.
y 15, 343–353, April 2008 ª2008 Elsevier Ltd All rights reserved 347
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Table 3. Agonist and Antagonist Activity of Compounds 27–49 on rTAAR1

Agonist Activity Antagonist Activity

Compound R6 EC50
a ± SEM (nM) Emax

b ± SEM (%) Nc IC50
d ± SEM (mM) Imax

e ± SEM (%) Nf

27 (ET-14) H 19 ± 2 131 ± 7 3 - - -

28 (ET-72) OH 232 ± 8 88 ± 9 2 - - -

29 (ET-73) OMe 102 ± 26 88 ± 1 3 - - -

30 (ET-74) OEt >1000 66 ± 3 2 - - -

31 (ET-75) OPr >1000 41 ± 0 2 - - -

32 (ET-76) OBu >1000 3 ± 0 2 8 ± 2 12 ± 3 2

33 (ET-77) OPent >1000 0 ± 3 2 5 ± 0 6 ± 1 2

34 (ET-78) OHex >1000 0 ± 1 2 4 ± 0 3 ± 1 4

35 (ET-79) OBn >1000 9 ± 1 2 5 ± 1 6 ± 3 2

36 (ET-80) O-iPr >1000 40 ± 1 2 - - -

37 (ET-81) O-iBu >1000 6 ± 1 2 >10 23 ± 6 2

38 (ET-82) OCH2CHCH2 602 ± 10 79 ± 5 2 - - -

39 (ET-83) OCH2CCH 182 ± 46 103 ± 0 2 - - -

40 (ET-95) OCH2-cyclopropyl >1000 26 ± 7 3 - - -

41 (ET-96) OCH2-cyclohexyl >1000 0 ± 3 2 5 ± 1 9 ± 1 -

42 (ET-97) OCH2CH2CH2CN >1000 3 ± 4 2 >10 30 ± 2 3

43 (ET-98) OCH2CH2CH2CH2CN >1000 2 ± 2 2 >10 23 ± 4 3

44 (ET-99) OCH2-(4-pyridinyl) >1000 4 ± 2 2 7 ± 1 15 ± 2 3

45 (ET-100) OCH2-(3-pyridinyl) >1000 9 ± 0 2 >10 33 ± 1 3

46 (ET-101) OCH2-(2-pyridinyl) >1000 6 ± 1 2 7 ± 0 16 ± 2 3

47 (ET-84) O2CCH2CH2Cl >1000 50 ± 8 2 - - -

48 (ET-85) O2CCH(CH3)2 599 ± 165 53 ± 6 2 - - -

49 (ET-86) O2CCH2CH(CH3)2 >1000 33 ± 7 2 - - -
a EC50 is the half-maximal effective concentration of a compound.
b Emax is the maximum stimulation achieved at a concentration of 10 mM and was calculated by use of Prism software. EC50 and Emax values represent

the average of N independent experiments in triplicate and were calculated by use of Prism software as described in the Experimental Procedures. The

standard errors of the mean (SEM) were calculated from the EC50 and Emax values of each independent triplicate experiment by use of Prism software.

Emax = 100% is defined as the activity of 1 at 10 mM.
c N is the number of independent experiments in triplicate that were performed and used to calculate the EC50 and Emax values.
d IC50 is the half-maximal inhibitory concentration of a compound at inhibiting the signal of fixed concentration of 1 (33 nM) in a competition assay.
e Imax is the maximum stimulation achieved by a fixed concentration of 1 (33 nM) when competed with a 10 mM dose of a compound. IC50 and Imax

values represent the average of N independent experiments in triplicate and were calculated by use of Prism software as described in the Experimental

Procedures. The standard errors of the mean (SEM) were calculated from the IC50 and Imax values of each independent triplicate experiment by use of

Prism software. Imax = 100% is defined as the activity of 1 at 10 mM. Imax of T1AM at 33 nM was 45% ± 5%.
f N is the number of independent experiments in triplicate that were performed and used to calculate the IC50 and Imax values.
predicted to have some agonist activity, as the ether or ester ap-

pendage would not be able to interfere with the rotamer switch

residues.

To test this hypothesis, the core scaffold of 14 was modified

to have the phenoxy group moved one carbon over to the meta

position with respect to the ethylamine chain (28) (Table 3; Sup-

plemental Scheme 7). In this orientation, the 2 and 6 positions of

the inner ring are now structurally distinct. Having a meta-phe-

noxy group should not be detrimental to binding affinity because

the isomer of 2 with the phenoxy group at the meta position (27)

was found to be a slightly better agonist than 2 for rTAAR1 (EC50

= 19 ± 2 nM, Emax = 131% ± 7%) (Figure 3C; Tan et al., 2007).
348 Chemistry & Biology 15, 343–353, April 2008 ª2008 Elsevier Ltd
With this modification, we synthesized 21 compounds (29–49)

with an ether or ester appendage at the 2 position that again var-

ied in steric bulk, rigidity, topology, and polarity (Table 3; Supple-

mental Schemes 7–9).

For the ether series (29–46), an interesting correlation was ob-

served between the size of the position 2 substituent (R6; Table 3)

and the agonist activity of the compound. The core scaffold 28

was �12-fold less potent (EC50 = 232 ± 8 nM) and 43% less

efficacious (Emax = 88% ± 9%) compared to 27 (Table 3). Meth-

ylating the phenol of 28 (29) increased the potency �2-fold

(EC50 = 102 ± 26 nM) but had no effect on efficacy (Emax =

88% ± 1%). When the ether group was an ethyl ether or larger
All rights reserved
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Table 4. Agonist and Antagonist Activity of Compounds 50–56 on rTAAR1

Agonist Activity Antagonist Activity

Compound R7 R8 R9 EC50
a ± SEM (nM) Emax

b ± SEM (%) Nc IC50
d ± SEM (mM) Imax

e ± SEM (%) Nf

50 (ET-88) H Ph H >1000 37 ± 9 2 - - -

51 (ET-89) Ph H H 201 ± 23 59 ± 6 2 - - -

52 (ET-90) Ph Ph CH3 >1000 0 ± 3 2 5 ± 1 10 ± 4 3

53 (ET-91) p-OH-Ph Ph H >1000 16 ± 3 3 - - -

54 (ET-92) p-F-Ph Ph H >1000 0 ± 3 2 3 ± 0 0 ± 3 3

55 (ET-93) m-F-Ph Ph H >1000 0 ± 4 2 3 ± 1 0 ± 5 3

56 (ET-94) m-CN-Ph Ph H >1000 0 ± 4 2 3 ± 1 2 ± 4 3
a EC50 is the half-maximal effective concentration of a compound.
b Emax is the maximum stimulation achieved at a concentration of 10 mM and was calculated by use of Prism software. EC50 and Emax values represent

the average of N independent experiments in triplicate and were calculated by use of Prism software as described in the Experimental Procedures. The

standard errors of the mean (SEM) were calculated from the EC50 and Emax values of each independent triplicate experiment by use of Prism software.

Emax = 100% is defined as the activity of 1 at 10 mM.
c N is the number of independent experiments in triplicate that were performed and used to calculate the EC50 and Emax values.
d IC50 is the half-maximal inhibitory concentration of a compound at inhibiting the signal of fixed concentration of 1 (33 nM) in a competition assay.
e Imax is the maximum stimulation achieved by a fixed concentration of 1 (33 nM) when competed with a 10 mM dose of a compound. IC50 and Imax

values represent the average of N independent experiments in triplicate and were calculated by use of Prism software as described in the Experimental

Procedures. The standard errors of the mean (SEM) were calculated from the IC50 and Imax values of each independent triplicate experiment by use of

Prism software. Imax = 100% is defined as the activity of 1 at 10 mM. Imax of T1AM at 33 nM was 45% ± 5%.
f N is the number of independent experiments in triplicate that were performed and used to calculate the IC50 and Imax values.
(30–37), the potency of the compound was poor (>1 mM). The ef-

ficacy showed a different profile. When the ether group was less

than five atom units long (30, 31, 36, and 40), the compound still

had some degree of agonist activity (Emax = 26%–66%). As the

ether group increased in size equal to or greater than five atom

units long (32–35 and 41–46), the compounds became nonagon-

ists, activating rTAAR1 at less than 10% efficacy. An exception to

this trend was 37. Although its isobutoxy group is only four atom

units long, 37 activated below 10% efficacy (Emax = 6% ± 1%).

Compared to 31 (EC50 = >1 mM, Emax = 41% ± 0%), introducing

an unsaturated alkene (38) or alkyne (39) into the position 2 group

increased both potency (EC50 = 602 ± 10 nM and 182 ± 46 nM,

respectively) and efficacy (Emax = 79% ± 5% and 103% ± 0%,

respectively).

In the ester series (47–49), the potency of the compounds was

greater than 1 mM when the position 2 functional group was five

atom units long (47 and 49) but less than 1 mM when four atom

units long (48, EC50 = 599 ± 165 nM) (Table 3). The efficacies

of 47–49 were between 33% and 53%.

Because there are currently no binding assays available for

rTAAR1, the antagonist activity of the ten nonagonists (32–35

and 41–46) was determined by testing for the inhibition of cAMP

production of rTAAR1 in stably transfected HEK293 cells treated

with EC50 concentration (33 nM) of 1. Representative dose-re-

sponse curves of antagonists against rTAAR1 are shown in Fig-

ure S1B. This competition assay was validated in the b2AR, where

the antagonist propranolol was able to inhibit the cAMP produc-

tion induced by the agonist isoproterenol (data not shown).

The ten nonagonists antagonized 1-induced rTAAR1 activation

to varying degrees. The butyl ether 32 showed ca 75% antagonism

with a half-maximal inhibitory concentration (IC50) of 8 ± 2 mM

(Table 3). Isobutyl ether 37 was also a weak antagonist, showing
Chemistry & Biology
50% inhibition and a potency of >10 mM. The longer pentyl and

hexyl ethers (33 and 34, respectively) were better antagonists,

reducing the 1 signal to 3%–6% at a potency of �4–5 mM. The

cyclohexylmethyl ether 41 was equally potent (IC50 = 5 ± 1 mM)

but somewhat less inhibitory (Imax = 9% ± 1%). Compared to the

benzyl ether 35 (IC50 = 5 ± 1 mM, Imax = 6% ± 3%), the heterocyclic

pyridine methyl ethers (44–46) were less potent (IC50 R 7 mM) and

inhibitory (Imax R 15%). The cyanoalkyl ethers 42 and 43 were poor

antagonists, inhibiting the 1 signal no lower than 23% with an IC50

value of >10 mM. The inhibitory effects of these compounds were

neither due to inhibition of adenyl cyclase nor cytotoxicty (data

not shown), suggesting that these compounds are bona fide

rTAAR1 antagonists.

Structure-Activity Relationship of rTAAR1

Lead Antagonist
The agonist and antagonist properties of 27 and 34, respectively,

suggested that the hexyloxy group is essential for antagonism.

To determine whether the outer ring (ring A in Figure 3A) and

b-phenyl ring are also necessary for antagonism, we synthesized

analogs of 34 lacking the outer ring (50) or the b-phenyl ring (51)

(Table 4; Supplemental Schemes 10 and 11). In an attempt to

improve the potency of 34, we also explored the effects of

N-methylation (52) and functionalization of the outer ring (53–56)

(Table 4; Supplemental Schemes 8 and 10).

Removing the outer ring or b-phenyl ring of 34 was detrimental

to rTAAR1 antagonism. In the absence of the outer ring (50), 34

was converted into a weak agonist (Table 4; Figure 3C). Similarly,

34 became an agonist without the b-phenyl ring (51, EC50 =

201 ± 23 nM, EC50 = 59% ± 6%) (Figure 3C).

Mono-methylating the amine (52) or inserting electron-with-

drawing groups on the outer ring (54–56) preserved the
15, 343–353, April 2008 ª2008 Elsevier Ltd All rights reserved 349
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antagonist activity of 34. When screened for agonist activity,

these compounds did not activate rTAAR1 (Table 4). In the antag-

onist assay, the potency of 52 was unaffected (IC50 = 5 ± 1 mM)

but the antagonist activity slightly decreased (IC50 = 10% ± 4%).

The potency and inhibitory capacity of 34 was also not signifi-

cantly affected by introducing a para-fluoro, meta-fluoro, or

meta-cyano group into the outer ring (54, 55, and 56, respec-

tively). The IC50 and Imax values of these compounds were

�3 mM and %2%, respectively. Interestingly, inserting a para-

hydroxyl group into the outer ring (53) endowed some agonist

activity to 34, activating rTAAR1 at >1 mM potency and 16% ±

3% efficacy.

DISCUSSION

The rotamer toggle switch model of aminergic GPCR activation

(Figure 2) has proven to be a useful guideline in the design and

synthesis of rTAAR1 agonists and antagonists. Previous SAR

studies on the ethylamine portion of 1 for rTAAR1 provided 2

as a promising scaffold for developing rTAAR11 superagonists,

which we define as compounds that are more potent and/or

efficacious than 1 (Tan et al., 2007). In addition to being as potent

and efficacious as 1, 2 provides the added benefit of having

many potential sites for derivatization. By analogy to the as-

sumed binding mode of epinephrine to the b2AR (Figure 1D),

we deduced 2 to bind to rTAAR1 in a similar fashion, with the

charged amine forming a salt bridge interaction with D3.32 and

the biaryl ether oxygen hydrogen bonding to S5.46 (Figure 3B).

The b-phenyl ring is proposed to occupy a pocket near the inter-

face of TM6 and TM7.

In the context of the rotamer toggle switch model, our analysis

of the ligand-receptor interaction of b2AR agonists showed that

agonists generally lack functional groups in the region of the mol-

ecule that is predicted to be located in the vicinity of the rotamer

switch residues. Structurally, most of these agonists appear to

have functional groups that complement the physicochemical

properties of the residues within the binding site. Following this

lead, we attempted to improve the agonist properties of 2 by

incorporating functional groups into the regions of the molecule

(e.g., b-phenyl ring, charged amine, outer ring, and position 5 of

the inner ring; Figures 3A and 3B) away from rotamer switch res-

idues. In the b-phenyl ring, SAR studies presented here showed

a clear preference for a hydroxyl group at the para position. The

para-hydroxyl analog (5) was 24- to 78-fold and 8%–46% more

potent and efficacious, respectively, compared to the ortho- or

meta-hydroxyl analogs (6 and 7) and ortho- or para-methoxy

(3 and 4) analogs. Additionally, the para-hydroxyl improved the

potency and efficacy of 2 �4.5-fold and 11%, respectively. We

believe that this enhancement in agonist activity is a reflection

of an increase in the binding affinity of 2 for rTAAR1 due to hydro-

gen bond interactions of the para-hydroxyl with N7.39 and/or

N7.35 (Figure 3B). Mutating residue 7.39 in the b2AR has previ-

ously been found to perturb the binding affinity of agonists and

antagonists (Suryanarayana et al., 1991). In the recently deter-

mined crystal structure of the b2AR, N7.39 of the b2AR was in-

volved in hydrogen bond interactions with the b-carbon hydroxyl

group of the partial inverse agonist carazolol (Cherezov et al.,

2007; Rasmussen et al., 2007; Rosenbaum et al., 2007).
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In the presence of the para-hydroxyl, mono-methylating the

charged amine (10) or incorporating a 1 moiety into the molecule

(12) was tolerated, but it had modest effects on agonist activity, if

any at all. N-methyl 10 was equipotent to 5 but 13% more effica-

cious. By contrast, 12 essentially has the same potency and ef-

ficacy as 5. The comparable levels of agonist activity of 5, 10,

and 12 suggest that these compounds have similar interactions

with rTAAR1 and possibly elicit the same final active conforma-

tion of the receptor.

In contrast to the b2AR agonists, our analysis of the SAR and

potential binding modes of antagonists for the dopamine 1-like

and 2-like receptors revealed the presence of structural moieties

within these compounds that could conceivably sterically

occlude the rotamer toggle switch residues from assuming their

active conformation. Applying this hypothesis to rTAAR1, we at-

tempted to convert 2 into an antagonist by installing ethers and

esters at the 2 position of the inner ring that varied in steric bulk,

rigidity, topology, and polarity (15–26). Based on our proposed

binding orientation of 2 (Figure 3B), this position was identified

to be the prime location for presenting groups that could interfere

with the rotamer switch residues in rTAAR1. Unfortunately, none

of these compounds turned out to be antagonists. Presumably,

15–26 were still able to activate rTAAR1 between 15% and 95%

efficacy, because the variable position 2 groups (R5; Table 2) are

positioned away from the rotamer switch residues within the

binding site owing to rotation of the inner ring about the b-carbon

and biaryl ether oxygen axis.

To circumvent this problem, we modified the core scaffold by

moving the phenoxy group from the para (14) to the meta (28) po-

sition (Tables 2 and 3). With this modification, the agonist activity

of the compound decreased as the size of the ether substituent

increased (Figure 3C). When the ether group was R5 atom units

long (32–35 and 41–46), the agonist activity of the compound

was completely abolished (%10% efficacy). Compounds with

substituents less than five atom units long (29–31) were weak ag-

onists, activating rTAAR1 between 41% and 88% efficacy. The

composition of the substituent appears to be important, as an

ester group that is five atom units long (47 and 49) was still an

agonist (EC50 = 33%–53%). When the nonagonists (32–35 and

41–46) were screened for antagonist activity in a competition as-

say with 1 at its EC50 concentration (33 nM), all compounds were

found to inhibit 1-induced cAMP production to varying degrees

at 10 mM. Compound 34 was the best antagonist, showing

>90% inhibition of rTAAR1 activation with an IC50 value of 4 mM.

The antagonist activities of 32–35 and 41–46 are thought to arise

from the ether substituents sterically occluding F6.52 and/or

W6.48 of the rotamer switch residues from assuming their active

conformation.

The hexyloxy group, outer ring, and b-phenyl ring of 34 are all

necessary for antagonism. In the absence of any one of these

groups, the resulting compounds lose their antagonist activity

and become agonists. Because the transformation of 34 to 27

yielded the greatest increase in agonist potency and efficacy,

the hexyloxy group is the most important of the three structural

elements in terms of decreasing agonist activity and conferring

antagonist properties to 34 (Figure 3C). This is consistent with

the notion that the outer ring and b-phenyl ring are essential scaf-

folding elements that assure 34 docks into the rTAAR1 binding

site in the proper orientation to position the hexyloxy group,
All rights reserved
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the molecular basis of antagonism, to interfere with the rotamer

switch residues (Figure 3D).

SIGNIFICANCE

The rotamer toggle switch model of aminergic GPCR activa-

tion is a useful model for understanding the molecular basis

of rTAAR1 activation by 1 and related analogs. It has proven

helpful in the development of rTAAR1 agonists and antago-

nists, providing superagonists 5, 10, and 12 and lead antago-

nists 34, 54, and 55. This structure-activity relationship study

suggests that agonist or antagonist properties of aminergic

GPCR drugs could arise from probable drug interactions

with the rotamer switch residues. Agonists allow the rotamer

switch to toggle and/or have more favorable interactions

with the active state of the receptor, whereas antagonists

sterically occlude the rotamer switch and/or have more fa-

vorable interactions with the inactive state of the receptor.

These agonist and antagonist design principles have the

potential to accelerate and increase the efficiency of the

drug discovery and development process for GPCRs. Hav-

ing insights into the critical ligand-receptor interactions im-

portant for receptor activation or inhibition facilitates the

interpretation of SAR data and correlation of pharmaco-

phore models with the molecular properties of the receptor

binding site. This information then provides a map of the

binding site landscape and presents a drug design blueprint

for identifying promising scaffolds, recognizing compatible

functional groups to incorporate, and evaluating the contri-

bution of individual structural elements of a given compound

toward its binding affinity, selectivity, and functional proper-

ties. We envision these principles to supplement all current

GPCR drug design strategies (e.g., ligand-based drug de-

sign, focused library screening, virtual screening, struc-

ture-based drug design, etc.) (Evers and Klabunde, 2005;

Evers et al., 2005; Klabunde and Evers, 2005; Klabunde and

Hessler, 2002) and help generate predictive rules and guide-

lines that would prove to be a useful and general method for

designing activators or inhibitors for biogenic amine GPCRs

and possibly other rhodopsin-like GPCRs.

EXPERIMENTAL PROCEDURES

Residue Indexing System

Residues are labeled relative to the most conserved amino acid in the trans-

membrane segment in which it is located (Ballesteros and Weinstein, 1995).

Tryptophan 6.48, for example, is located in transmembrane 6 and precedes

the most conserved residue by 2 positions. Arginine 3.50 is the most

conserved residue in TM3. This system simplifies the identification of corre-

sponding residues in different GPCRs.

Homology Model of rTAAR1

The sequence of rTAAR1 was aligned to 26 human biogenic amine GPCRs (i.e.,

dopamine, a-adrenergic, b-adrenergic, and serotonin receptors) and the se-

quence for bovine rhodopsin (Protein Data Bank [PDB] code: 1F88) (Palczewski

et al., 2000) using the program MUSCLE (Edgar, 2004). We constructed our

homology model of rTAAR1 based on the crystal structure of the inactive state

bovine rhodopsinasa template andused our in-house software PLOP (commer-

cially available as Prime from Schrödinger Incorporated). The modeling program

did not modify conserved residues, leaving each atom in these residues at their

original PDB coordinates. Nonconserved side chains were built onto the struc-
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ture using the backbone coordinates for bovine rhodopsin as a reference point.

All chain breaks or gaps were closed using a previously published loop building

and optimization algorithm (Jacobson et al., 2004). After building the complete

model, side-chain optimization, followed by backbone and side-chain energy

minimization,wasperformedon all nonconserved residues.Thehomologymod-

eling program relies on the OPLS all-atom force field (Jacobson et al., 2002; Jor-

gensen et al., 1996; Kaminski et al., 2001) and a generalized Born solvent model

(Gallicchio etal., 2002; Ghosh etal., 1998) toevaluate theenergyof differentcon-

formations and select the lowest-energy structure as the final model.

Synthesis

Detailed synthetic procedures and chemical compound information are

described in the Supplemental Data.

In Vitro cAMP Assays: Agonist Activity Assay

After incubating in fresh medium for at least 2 hr, HEK293 cells stably trans-

fected with rTAAR1 were harvested in Krebs-Ringer-HEPES buffer (KRH)

and preincubated with 200 mM 3-isobutyl-1-methylxanthine (IBMX) for 20–

30 min. Cells were incubated in KRH with 133 mM IBMX and 3 ml of the test

compound, forskolin (10 mM), or vehicle (dimethyl sulfoxide; DMSO) for 1 hr

at 37�C (300 ml total volume). The cells were boiled for 20 min after addition

of 100 ml of 0.5 mM sodium acetate buffer. The cell lysate was centrifuged

to remove cellular debris, and an aliquot (30 ml) was transferred to an opaque,

flat-bottom 96-well plate (Corning). The cAMP content of the aliquot was mea-

sured by use of the Hithunter cAMP XS kit (DiscoveRX). The plate was shaken

on a titer plate shaker for 2 min after addition of 20 ml of cAMP XS antibody/lysis

mix. After incubation in the dark for 1 hr, 20 ml of cAMP XS ED reagent was

added and the plate was shaken for 2 min. After another hour of incubation

in the dark, 40 ml of cAMP XS EA/CL substrate mix was added and the plate

was shaken for 2 min. The plate was sealed with an acetate plate sealer

(Thermo Scientific) and allowed to incubate in the dark for 15–18 hr before

luminescence was measured (3 readings/well at 0.33 s/reading) on an Analyst

AD assay detection system (LJL Biosystems) or a Packard Fusion microplate

reader. Data were reported relative to 1 and expressed as % T1AM. The

activity of 1 at 10 mM was set as 100% T1AM. Concentration-response curves

were plotted and EC50 values were calculated with Prism software (GraphPad).

Standard error of the mean was calculated from the EC50 and EMax values of

each independent triplicate experiment by use of Prism software.

In Vitro cAMP Assays: Antagonist Activity Assay

This was the same as the agonist activity assay procedure described above

with the following changes: cells that were harvested in KRH buffer and

preincubated with IBMX for 20–30 min were incubated in KRH with 133 mM

IBMX and 3 ml of the putative antagonist or vehicle (DMSO) for 30 min at

37�C (300 ml total volume). Three microliters of the competing agonist

(T1AM, EC50 concentration [33 nM] as the final concentration), T1AM

(10 mM), forskolin (10 mM), or vehicle (DMSO) was then added to the reactions

before incubating for 1 hr at 37�C. The cells were then processed as described

in the agonist activity assay. Concentration-response curves were plotted and

IC50 values were calculated with Prism software.

SUPPLEMENTAL DATA

Supplemental Data include one figure, eleven schemes, and Supplemental

Experimental Procedures and can be found with this article online at

http://www.chembiol.com/cgi/content/full/15/4/343/DC1/.
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